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Edge states and the integer quantum Hall conductance in spin-chiral
ferromagnetic kagomé lattice
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We investigate the chiral edge states in the two-dimensional ferromagnetic kagomé lattice with spin
anisotropies included. The system is periodic in the x direction, but has two edges in the y direction. The
Harper equation for solving the energies of edge states is derived. We find that there are two edge states in each
bulk energy gap, corresponding to two zero points of the Bloch function on the complex-energy Riemann
surface (RS). The edge-state energy loops parametrized by the momentum k, flow across the holes of the RS.
When the Fermi energy lies in the bulk energy gap, the quantized Hall conductance is given by the winding
number of the edge states across the holes, which reads as of,f,ge=—%2 sgn(sin ¢), where ¢ is the spin-chiral
parameter (see text). This result is consistent with that based on the topological bulk theory.
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Recently, the quantum transport of electrons in spin-orbit
coupled!= or spin-chiral ferromagnetic systems*~’ has been
the focus of intense interest in condensed matter physics.
One typical spin-chiral ferromagnetic system is represented
by pyrochlore compounds R,Mo0,0; (R=Nd, Sm, and Gd),
in which the spin configuration is noncoplanar and the spin
chirality appears. As a consequence, the quantum transport
of electrons, especially the transverse conductivity oy, is
expected to be affected by the presence of spin chirality.
Ohgushi et al.® have first pointed out that the chiral spin state
can be realized by the introduction of spin anisotropy in an
ordered spin system on the two-dimensional (2D) kagomé
lattice, which is the cross section of the pyrochlore lattice
perpendicular to the (1,1,1) direction.’ In this case, it has
been shown in the topological bulk theory®!? that the pres-
ence of a chiral spin state may induce a gauge-invariant non-
zero Chern number, thus resulting in a quantized Hall effect
in insulating state.

In this paper, we turn to study the 2D kagomé lattice with
two edges, which, as will be shown below, displays two chi-
ral (instead of nonchiral) edge states localized near the
sample boundaries. Closely following the topological edge
theory established in the past decade,!'~!3 we first derive the
transfer matrix (namely, the Harper equation'4-'®) for solving
the energies of the edge states. Although the transfer matrix
elements are no longer polynomials of the energy € for a
fixed spin-chiral parameter ¢ (except in special cases ¢
=0, = 7/2,m), we find that the transfer matrix method is
also applicable in this system. Then by numerical calcula-
tion, we find that there are two edge states in each bulk
energy gap, corresponding to two zero points of the Bloch
function on the complex-energy Riemann surface (RS). Re-
markably different from the case of a square lattice under a
magnetic field,!" the edge-state energy loops move across
(not around) the holes in the RS in the present model. The
two edge-state energy loops lying in the same energy gap are
tangent at one point and their appearance shows an “®”
structure. Furthermore, we obtain that when the Fermi en-
ergy lies in the bulk energy gap, the quantum Hall conduc-
tance given by the winding number of the edge state can be
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written as o=

oy —eh—z sgn(sin ¢). This result, based on the to-

pological edge theory, is consistant with that based on the
topological bulk theory.?10

Following Ref. 8, we consider the double-exchange ferro-
magnet on the kagomé lattice schematically shown in the left
panel of Fig. 1.810 Here, the triangle is one face of the tetra-
hedron, and the easy axis of the spin anisotropy points to the
center of each tetrahedron and has an out-of-plane compo-
nent. In this situation, the three local spins on sites A, B, and
C in the left panel of Fig. 1 have different directions and the
spin chirality emerges. The effective Hamiltonian for the
hopping electrons strongly Hund coupled to these localized
spins is given by HzENleJffcfcj, with tfjffzt()(,-b(j)
i By . . . ..
=te'"i cos 5'. Here, the spin wave function lx;) is explicitly

. i T )

given by | Xi)z[cos j,e"”t sin 3] , where the polar coordi-
nates are pinned by the local spins, i.e., {x;|S:/x;)
=%(sin 0; cos ¢;,sin ; sin ¢, cos ¥;). 9 is the angle be-
tween the two spins S; and S;. The phase factor a;; can be
regarded as the gauge vector potential a,,(r), and the corre-
sponding gauge flux is related to scalar spin chirality x;;
=S;-(S;XS;)."" In periodic crystal lattices, the nonvanishing
of the gauge flux relies on the multiband structure with each
band being characterized by a Chern number.'®!° Following
Refs. 8 and 10, we set the flux originated from the spin
chirality per triangle (see Fig. 1) as ¢, which satisfies ¢'®
=ell@astasctaca) The flux penetrating one hexagon is deter-
mined as —2¢. We take the gauge in which the phase of tfjff
is the same for all the nearest-neighbor pairs, with the direc-
tion shown by the arrows in the left panel of Fig. 1. It should
be pointed out that the net flux through a unit cell vanishes
due to the cancellation of the contribution of the two tri-
angles and a hexagon. Also noted is that the time-reversal
symmetry is broken except for cases of ¢=0 and . In the
following we change notation i — (Ims), where (Im) label the
kagomé unit cell and s denotes the sites A, B, and C in this
cell. The size of the unit cell is set to be unity throughout this
paper.

Now we suppose that the system is periodic in the x di-
rection, but has two edges in the y direction (see the right
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FIG. 1. (Color online) Left panel: Two-dimensional spin-chiral ferromagnetic kagomé lattice. The dashed line represents the Wigner-Seitz
unit cell, which contains three independent sites (A, B, and C). It is assumed that each site has a different spin anisotropy axis. The arrows

denote the sign of the phase of the transfer integral ;.

panel of Fig. 1). Since the system is periodic in the x direc-
tion, we can use a momentum representation of the electron
operator

Clims) =

1 .
/__2 e‘kxx(l"“>’)’ms(kx)’ (1)
VLx ky

where (X5, Y (1ms)) are the coordinate of the site s in the
unit cell (Im), and k, is the momentum along the x direction.
Let us consider the one-particle state |WV(k,))
=%, W,k ) ¥ (k)|0). Inserting it into the Schrodinger
equation H|W)=¢/W), we can easily obtain the following
three eigenvalue equations for sites A, B, and C:

v, = e—i(/>/3[ ei(1/4)kx\I,mB + e—i(1/4)kx\l,(m+l)3]

+ ei¢/3[ e—i(1/4)kﬂlfmc n ei(1/4)kx\Ir(m+1)C],

eV, p=2¢" ip/3 COS< )\]f + et¢/3[e—z(1/4)kx\1,mA
+ ],
G‘I'mC = e_id)B[ei(lM)kX\PmA + e_i(l/4)kxq,(m—1)A]

) k
+ 263 cos(f)?mB. (2)

Eliminating the B- and C-sublattice sites, we obtain the dif-
ference equation,

{63 - 46[1 + cos2<%>] -8 cosz(%>cos (l)}\lf

=2 cos( )(e+ 208 P Viena+ Yinonal- ()

This is the Harper equation.'*!> Equation (3) can be repre-
sented in the following matrix form:

\Ir(m+1)A ) ~ ( \I,mA )
=M(e , (4
( \I,mA ( ) q,('71—1)A )

where

Right panel: The 2D kagomé lattice system with edges along the y direction.

_1) S
0 (5)

2cos( ) In the following, we do

io=(;

e(e-4)
2cos(ky/2)(er2cos )
not explicitly write the subscrlpt A in Eq. (4). Then we get a
reduced transfer matrix linking the two edges as follows:

Vi) (q,> .
w, )74l ) ©

M, (e) M12(€)>
M,,(e) My(e)

and p=

where

M(e)=M(e)" = ( (7)
For general ¢, which varies in the range between —7r and 77,
M(e) (i, j=1 and 2) are not polynomials of €. At four spe-
cial values, i.e., $=0, = 727,77 however, they can be written
as polynomials of €, with the degree of 2L, for M, 2L,
—1 for M, and M,,, and 2L,=2 for M. In fact, in the
spin- ch1ra1 cases of ¢p=* 7, the factor p in M;; is reduced to
p—m 2 cos( ) Whereas in the spin- nonchlral cases
of $=0 and m, the factor p in M;; is reduced to p

e(ex2)
= T eosi2) 2 cos( ) All kinds of solutlons from Eq. (6) are
obtained by dlfferent choices of W, and W¥,.

Now we investigate the energy spectrum of the one-
dimensional problem with special attention to the edge

states. The boundary condition of this problem is
W, =W,=0. ()

With Egs. (6) and (7), one can easily obtain that the solutions
satisfy

M, (e) =0. )

\I,L),H 5 ‘I’ -1 (\I’I)
v, = M(e) q,L =Ml ).

one can find that

From
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Energy

(c)

FIG. 2. (Color online) Energy spectrum of the two-dimensional spin-chiral ferromagnetic kagomé lattice system with fixed boundary
under different spin-chiral parameters: (a) ¢=0, (b) ¢=7/3, and (c) ¢p=m/2. The shaded areas are the energy bands and the colored lines
are the spectrum of the edge states. The red and blue lines mean that the edge states are localized near y~1 and y=~ L,— 1, respectively.

‘I’Ly—l =-M(e)V¥,. (10)

If we use a usual normalized wave function, the state is
localized at the edges as

|M,,(e)| <1 localized at y = 1 (down edge),

|My(e)] > 1 localized at y = L, -1 (up edge). (11)

Because the analytical derivation is very difficult, we now
start a numerical calculation from Eq. (2) and draw in Fig. 2
the energy spectrum of the fixed boundary system as a func-
tion of k, for three values of spin-chiral parameter ¢. The
number of sites A (or B or C) in the y direction is chosen to
be L,=50. Clearly, one can see that the edge states occur in
the energy gaps or at the band edges. From Figs. 2(b) and
2(c), one can clearly observe that in the spin-chiral cases,
i.e., ¢# 0 (or 7), there are three dispersed energy bands (the
shaded areas) with two edge states (the colored lines) lying
in each energy gap. This feature is different from that in the
case of the square lattice in an external magnetic field,'" in
which each gap has only one edge state. The reason for this
difference is that the factor p in M;;(€) is no longer a linear
function of € in the present case.

Before studying the Hall conductance of this system, let
us briefly review the winding number,!"!3 which is, as well
as the Chern number, a well-defined topological quantity. Let
us consider the bulk Bloch function at sites with y coordinate
of L. For the Bloch function, ‘If(lb) and ‘I’(Ob) compose an
eigenvector of M with the eigenvalue p,

\I,(lb) \I,(lb)
M(e) \Pg,) =pl(e) q,(()b) . (12)

We extend the energy € to a complex energy to discuss a
wave function of the edge state. Here, we use complex vari-
able z for the energy. From Eq. (12) we get

()= 5[AG) A7) ~4] (13
and
- ‘J’ 2 -
‘I’Ly—1(2)=— M y,(z) + M (2) = VA*(z) -4 M, (2).

—M,(2) + Myy(z) + VA*(2) — 4
(14)

where A(z)=Tr[M(z)] and ¥,=1 are used. Since the analytic
structure of the wave function is determined by
=\A%(z)—4, we consider the RS of a hyperelliptic curve
?>=A?(z)—4. To make the analytic structure of w unique, we
have to specify the branch cuts which are given by A2(z)
—4=<0 at Jz=0. Since this condition also gives the condition
for |p|=1, the branch cuts are given by the three energy
bands. Therefore, A%(z)—4 can be factorized as

6
w=VA2) 4= /1T @-N),
i=1

where \; denote energies of the band edges. The RS is ob-
tained by gluing the two Riemann spheres at these branch
cuts along the arrows (see Fig. 3). The Riemann spheres are
obtained by compactifying the |z|=% points to one point.
After the gluing operation, the surface is topologically
equivalent to the surface shown in Fig. 4. In the present
model, the genus of the RS is g=2, which is the number of
energy gaps. In this way, the wave function is defined on the
genus-2 RS 2., (k,). The branch of the function is specified
as A%(z)—4>0 (z— — on the real axis of R*). Then if z lies
in the jth gap from below on the real axis (notice that there
are two real axes), a(=1)/\A%(z)—4=0, z (real) on R® (a
=+,-). So, at the energies of the edge states s
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FIG. 3. (Color online) Two sheets (Riemann spheres) with 3
cuts which correspond to the energy bands of the system. The RS of
the Bloch function is obtained by gluing the two spheres along the
arrows near the cuts.

V’Az(Mj) -4

=a(- 1)j|M1|(Mj) —Mzz(,U«j)| (Mj € R a=+,-).
(15)

In addition, by simple calculation, we can also obtain

A <-2 for j odd (16)
€ =2 for j even,

where the energy € (on R™) is in the jth gap. From Egs. (15),
(16), and (11), we can get that when the zero point is on the
upper sheet of the RS, the edge state is localized at the down
edge; when the zero point is on the lower sheet of the RS, the
edge state is localized at the up edge.

In Fig. 4, on the RS, the energy gaps correspond to circles
around the holes of the %,_,(k,) and the energy bands corre-
spond to closed paths on X,,(k,). The Bloch function is

defined on this surface. \Ifib?_l has always 2g=4 zero points
at the edge-state energy ,uj) [\I’(Lb)_l(uj)=0]. Since there are
two real axes on the 2., (k,), there are eight u;’s on the RS.
However, only one of every two gives a zero of ‘If(Lb)_l.
Changing k, in one period, we can consider a fa{mily of
2 o0(ky). 2405(k,) can be modified by this change, yet all the
2, o(k,) with different k,’s are topologically equivalent if
there are stable energy gaps in the 2D spectrum. By identi-
fying the topologically equivalent X,_,(k,), we can observe
that the ,u,j(kx) moves across the holes and forms an oriented
loop C(u;). Note that the present case is prominently differ-
ent from the previous case of the square lattice under an
external magnetic field,'" in which w; moves around the
holes due to the fact that the edge state u; links two bands in

FIG. 4. The RS of the Bloch function. C(u;) is a loop formed by
the trace of the zero point of W; _;(z). The energy bands are shown
by closed loops. The corresponding winding numbers are (C(u;))
=1 for all j.
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one period of k,. The two edge-state energy loops C’s in the
same energy gap are tangent at one point and their appear-
ance shows a o structure, as shown in Fig. 4.

As pointed out by Hatsugai,'"!> when the Fermi energy €
of the 2D system lies in the ith energy gap, the Hall conduc-
tance is given by the winding number of the edge state,
which is given by the number of intersections I(«a;, C(u;))
[=1(C(u;))] between the canonical loop «; on the RS and the
trace of w;. In the present model, because there are two edge
states and, correspondingly, there are two canonical loops in
one energy gap, the Hall conductance by its definition can be
written as

2

e

- ;I(C(sz—l)), €S €r;

aledee = 2 (17)
- ;I(C(sz)), €F =~ €1,

where e is the energy at the tangent point in the jth energy
gap. Similarly, this expression can be obtained by the Byers-
Yang formula:? Suppose that one increases an external mag-
netic flux ® from O to 1 adiabatically. According to the
Laughlin-Halperin argument,?’->?> when the Fermi energy lies
in the jth energy gap and e <er [or x> €r ], (C(uy-1))
[or I(C(j;))] states are carried from the down /edge (y=1) to
the up edge (y=L,-1) in net. The energy change during the
adiabatic process is AE=I(C(uy;_))(-e)V, [or AE
=1(C(uy)))(~e)V,], where V is a voltage in the y direction.
This gives the Hall current /, as follows:

AE

I — ————
TP AD

oy Vi, (18)
where ®y=hc/e is the flux quantum. Then we get an expres-
sion for crfgge as Eq. (17).

On the genus g=2 RS, the first homotopy group is gener-
ated by 4g=8 generators, «; and B;, i=1,...,4. We can ob-
serve that wy;_; (u,;) moves one time across the jth hole,
which means Cluy;—y) [Clup)]=B; and |[I(C(pyjy))
[[1(C(u)))|]=1. Considering winding direction (see Fig. 5 in
Ref. 11), one can obtain that I(C(w;))=1 when ¢ e (0,7),
while I(C(u;))=—1 when ¢ e (—,0) for all i. So, I(C(u,))
=sgn(sin ¢) and

2

gledee - pPedee — % sgn(sin ¢). (19)

Xy Xy

Now we turn back to make an analysis of Fig. 2 with the
help of the above results. At ¢=0, the lower energy band
becomes dispersionless [Fig. 2(a)], which reflects the fact
that the 2D kagomé lattice is a line graph of the honeycomb
structure.”® This flat band touches at k,=0 with the middle
band, while the middle band touches at kx=23—” and 4{ with
the upper band. So there are no bulk energy gaps, and the
Hall conductance is zero in this case. At ¢# 0 and r, the 2D
kagomé lattice has spin chirality, and there occur two bulk
band gaps, as shown in Fig. 2(b) for ¢»= /3 and Fig. 2(c) for
¢=m/2. Then according to Eq. (19), one can obtain that

: : : 1,edge _ _2.edge
when the Fermi energy lies in the bulk gaps, o; —0'2xy
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=—%2. Note that in the case of ¢=§, the middle energy band
becomes flat [Fig. 2(c)] due to the particle-hole symmetry.
Finally, let us compare 0°%° [Eq. (19)] in the present
model with that in the bulk theory.®!” In the latter, the
bulk Hall conductance has been derived to be o-i’yba“d
__ e . g2-band_ o3-band _ & .
=—7 sgn(sin ¢), o 0=0, and 03" =5 sgn(sin ¢) for the
three bands. So, when the Fermi energy ey lies in the ith

energy gap, the bulk Hall conductance Ufc’;”“lk is given by
i
i,bulk __ j,band __
OJXy - E] o'jcy -
]:

o2
m sgn(sin ¢), (20)

where i=1 and 2. Comparing Eq. (20) with Eq. (19), one can
obtain

oﬁ;lge = Ug;lk, (21)

which is in accord with the recently established common
recognition on the Hall conductance in the systems with and
without edges.

Note that the gapless edge states in the truncated kagomé
lattice are topologically stable against random-potential per-
turbation, provided that the perturbation is small compared to
the bulk gaps. We have numerically confirmed this point.
Actually, the key factor for the emergence of the two edge
states in each gap and their consequent crossing in the gap is
the spin-chiral parameter ¢, which is determined by the cou-
pling between conduction electrons and local magnetic mo-
ment on each site of the lattice. In the present treatment, the
local Hund’s exchange interaction J, (between the conduc-
tion electrons and the local spins) has been assumed infinite,
which completely polarizes the spins of conduction electrons
and results in the description of conduction electrons in
terms of the spinless fermions and the effective three-band
model. In other words, we are treating the case of infinite
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Mott gap. From this sense, a more realistic treatment is to
take into account the finite exchange interaction and, thus, to
explicitly include the spin degrees of freedom in a six-band
model. In this case, the winding features of the edge states
below the Mott gap are expected to differ from those in the
present paper and, thus, it will be interesting to study the
different behaviors of the edge states by tuning the exchange
field from the weak to the strong cases (compared to the
electron hopping energy ). However, the crossing property
of the two edge states remains unchanged upon the inclusion
of finite J,. The subsequent finite Mott gap also remains
trivial, in the sense the topological edge states in the Mott
gap will not appear. Besides the ratio J,/t being an interest-
ing energy scale, the amplitude of temperature provides the
other energy scale to determine the validity of the present
model we used. In particular, at high temperature, due to the
spin wave excitation, the present approximation of frozen
electron spins aligning with the local magnetic moments
turns to be invalid, and the effect of spin fluctuation should
be properly accounted for. We would like to leave these open
issues for future studies.

In summary, we have investigated the effect of the chiral
edge states on the quantum Hall conductance in the 2D
kagomé lattice with edges. According to our derived Harper
equation, there are two edge states lying in each energy gap.
They are tangent at one point in the gap, thus showing an
structure. The energy loops for these two edge states move
across the holes in the RS. We have also analyzed the wind-
ing number of these two edge states, which gives the quan-
tum Hall conductance ai;lge:—% sgn(sin ¢) when the Fermi
energy lies in the bulk gap. This conclusion is consistent with
that based on the topological bulk Chern-number theory.
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